
princeton univ. F’23 cos 521: Advanced Algorithm Design

Lecture 8: Concentration Bounds

Lecturer: Huacheng Yu

1 Preliminaries

Today’s topic is deviation bounds: what is the probability that a random variable deviates
from its mean by a lot? Recall that a random variable X is a mapping from a set of possible
outcomes S to R. We usually think of S as containing numerical quantaties and for now,
that just means scalar numbers. Later in the course, we will consider situations where S
contains vectors or matrices. The expectation or mean is denoted E[X] or sometimes as µ.

E[X]
def
=
∑
s∈S

Pr[X = s] · s

To give an example, consider a random variable X that corresponds to the toss of a fair
coin. X maps the possible outcomes {0, 1} each to 1/2, taking value 0 when the coin lands
on tails, and 1 when the coin lands on heads. In this case, E[X] = 1/2. In many settings
we have a set of n random variables X1, X2, X3, . . . , Xn defined on the same set of possible
outcomes. For example, each Xi might correspond to the toss of a different random coin.

In addition to the expectation, the variance of a random variable is defined as:

Var[X]
def
= E

[
(X − E[X])2

]
.

We will often use µ to denote E[X] and σ2 to denote Var[X].
Here are examples of facts that you might remember from discrete math or other under-

grad classes. We won’t prove them all in class, but it might be a good refresher to re-derive
them yourself or in office hours.

• For any random variables, independent or not, E[
∑

iXi] =
∑

i E[Xi]. This is called
the Linearity of Expectation.

• If X1, X2 are independent random variables (formally, this means that for all a, b
Pr[X1 = a,X2 = b] = Pr[X1 = a] Pr[X2 = b]), then E[X1 ·X2] = E[X1] · E[X2].

• When we say a set of random variables X1, . . . Xn are mutually independent, we mean
that for all a1, . . . , an, Pr[X1 = a1, X2 = a2, . . . Xn = an] =

∏
i Pr[Xi = ai].

• We say that X1, . . . , Xn are pairwise independent random variables if for all Xi, Xj ,
Xi and Xj are independent, but the set of all variables are not necessarily mutually
independent.

• If X1, . . . , Xn are pairwise independent, then Var [
∑

iXi] =
∑

iVar[Xi].

Exercise: Give an example of three random variables that are not mutually independent,
but are pairwise independent.

1

2

1.1 Three progressively stronger tail bounds

As we saw in the past two lectures, and will see again and again in this class, one of our
main goals when analyzing randomized algorithms will be to understand when random
variables behave as expected. In other words, with what probability do they fall close to
their expectation?

Any bound of this form is called a tail bound or concentration inequality. Today we
will see three methods that give progressively stronger bounds, but under progressively
stronger assumptions. They are Markov’s inequality, Chebyshev’s inequality, and the Cher-
noff bound.

2 Markov’s Inequality

The first of a number of inequalities presented today, Markov’s inequality says that any
non-negative random variable X satisfies

Pr (X ≥ kE[X]) ≤ 1

k
.

Note that this is just another way to write the trivial observation that E[X] ≥ k ·Pr[X ≥ k].
Can we give any meaningful upperbound on Pr[X < c · E[X]] where c < 1, in other

words the probability that X is a lot less than its expectation? In general we cannot.

Exercise: For any c < 1, δ < 1, find a distribution where Pr[X < cE[X]] = 1− δ). In other
words, X is very often far below it’s expectation.

However, if we know an upperbound on X then we can make such a statement. If X ≤ z
then for any c < 1 we have:

Pr(X ≤ cE[X]) ≤ z − E[x]
z − cE[x]

.

Sometimes this is also called an averaging argument.

Exercise: Prove this using Markov’s inequality, but on a different random variable.

Example 1. Suppose you took a lot of exams, each scored from 1 to 100. If your average
score was 90 then in at least half the exams you scored at least 80.

Markov’s inequality can sometimes be useful for making quick deductions about random
variables. It also applies to any non-negative random variable. Because arbitrary non-
negative random variables can behave wildly, we shouldn’t hope for a stronger claim to
hold without making some reference to properties of the random variable. We now move
on to Chebyshev’s inequality, which makes use of the variance.

3 Chebyshev’s Inequality

The variance of a random variable X is one measure (there are others too) of how “spread
out” it is around its mean. The variance is defined as Var[X] = E[(X − E[X])2] = E[X2]−

3

E[X]2, and we often denote it by σ2. The square root of the variance, σ, is called the
standard deviation.

A more powerful inequality, Chebyshev’s inequality, says

Pr[|X − E[X]| ≥ kσ] ≤ 1

k2
,

Actually, Chebyshev’s inequality is just a special case of Markov’s inequality: by definition,

E
[
|X − E[X]|2

]
= σ2,

and so,

Pr
[
|X − E[X]|2 ≥ k2σ2

]
≤ 1

k2
.

3.1 Example: Load balancing

Suppose we have n values, a1, . . . , an, from some universe |U | and we want to hash these
values to a table of size n. This is often call the “balls-into-bins” problem because we can
think about hashing as randomly throwing balls into bins, and seeing how many balls each
bin has. It’s convenient to first analyze the case when the number of balls equals the number
of bins, although this isn’t always the setup.

Just using Markov’s inequality, we can get a bound on the maximum load of one par-
ticular bin. However, the bound we get is not strong enough to take a union bound over
all bins. Indeed, if we hash n balls into n bins, the expected load of a bin is 1. Therefore,
Markov’s inequality tells us that the probability that a particular bin has more than n balls
is < 1/n, and a union bound tells us that with probability > 0, no bin has > n balls. This
is not particularly impressive, as there are only n balls in total.

It turns out that we can get a bound on the maximum load using Chebyshev’s in-
equality. Let’s just consider the the first bin and how many balls fall into it. Let Xi =
1[ball i falls into bin 1]. Assume that we are using a pairwise-independent hash function,
so:

E[Xi] =
1

n
.

What’s the variance of Xi?

Var[Xi] = E[X2
i]− E[Xi]

2 =
1

n
− 1

n2
≤ 1

n
.

Now, let X =
∑n

i=1Xi. X is the total number of balls that land in bin 1 and E[X] = 1.
What’s the variance of X? Since each Xi, Xj are pairwise independent,

Var[X] =
n∑

i=1

Var[Xi] ≤ 1.

From Chebyshev’s inequality, we therefore have that:

Pr[|X − 1| ≥
√
2n] ≤ 1

2n
.

4

So bin 1 has load ≤
√
2n+ 1 with probability at least (1− 1

2n), and this exact same bound

holds for all other bins. Thus, by a union bound, every bin has load ≤
√
2n + 1 with

probability 1/2. That’s not bad! For n = 1, 000, 000, we can say that the maximally loaded
bin has ≲ 1400 elements. Shortly, we will see how to get an even tighter bound than O(

√
n).

3.2 Another common use

We won’t give a specific example in class, but it is helpful to mention that Chebyshev’s
inequality can often be used to analyze how well an average of many random variables
concentrates around its expectation. In particular, suppose Y1, Y2, . . . , Yt are i.i.d. (inde-
pendent and identically distributed) random variables, meaning that they have the same
distribution. Suppose each has variance σ2. Then:

Var

(
1

t

∑
i

Yi

)
=

σ2

t
.

In other words, even if each Yi does not concentrate close to its mean, taking an average
quickly improves our variance and gives better concentration via Chebyshev’s inequality.

4 Chernoff bounds

4.1 Motivation

How tight is Chebyshev’s inequality? I suspect many of you have seen this picture before:

Figure 1: 68-95-99 rule for Gaussian bell-curve.

5

If X is distributed as a normal random variable, aka a Gaussian, aka a Bell Curve, and
it has standard deviation σ (i.e. variance σ2), then it is well known that:

Pr (|X − E[X]| ≥ 1σ) ≈ 32%

Pr (|X − E[X]| ≥ 2σ) ≈ 5%

Pr (|X − E[X]| ≥ 3σ) ≈ 1%

Pr (|X − E[X]| ≥ 4σ) ≈ .01%

On the other hand, Chebyshev inequality would predict upper bounds of:

Pr (|X − E[X]| ≥ 1σ) ≤ 100%

Pr (|X − E[X]| ≥ 2σ) ≤ 25%

Pr (|X − E[X]| ≥ 3σ) ≤ 11%

Pr (|X − E[X]| ≥ 4σ) ≤ 6%.

It appears that, at least for the common Gaussian distribution, we can obtain much
stronger concentration bounds: the chance of landing outside a given number of standard
deviations falls off very fast. This makes sense if we look at the probability density function,
N , of the Gaussian distribution:

N (x) ∼ e−x2/2σ2
.

The distribution is falling off exponentially in x/σ.

Exercise: For Gaussian X with variance σ2, show that Pr (|X − Ex| ≥ cσ) ≤ O(e−c2/2).

Why are bounds for Gaussian random variables important in algorithm design?

The Central Limit Theorem says that the sum of n independent random variables (with
bounded mean and variance) converges to the Gaussian distribution, even if those random
variables themselves aren’t Gaussian. For many random variables that appear in random-
ized algorithms, this convergence happens very quickly, meaning that we can analyze the
sum by treating it as a Gaussian random variable.

A well known example is coin tossing. Let X =
∑n

i=1Xi be a random variable which
is the sum of n random variables, X1, . . . , Xn, each being 1 with probability 1/2 and 0
otherwise. X represents the number of heads that will appear when flipping n fair coins.
It is possible to explicitly compute the distribution of X. As we see in Figure 2, this
distribution quickly begins to look like a Gaussian distribution as n increases.

This concentration to a Gaussian implies that we can get much better bounds on, e.g.
coin tossing processes, than we would via Chebyshev’s inequality. To do a back of the
envelope calculation, if we flip n coins and all n coin tosses are fair (heads has probability
1/2) then the Gaussian approximation has mean n/2 and variance n/4. Let X be the
number of heads we see. We can bound Pr(|X − n/2| ≥ kσ) ≤ e−k2/2. σ = O(

√
n), so if we

want to be within ϵn of n/2, we need to set k = ϵ
√
n.

How large do we need to set n to achieve this bound with probability 1/2? We need
n = O(1/ϵ2). How about with probability 1/n10? We need n = O(log(n)/ϵ2). In other
words, we pay very little to achieve much higher probability estimates. To give a real
number example, if we flip 1000 coins, the chance of seeing at least 625 heads is less than
5.3× 10−7. These are pretty strong bounds!

6

(a) Distribution of # of heads after 10
coin flips, compared to a Gaussian.

(b) Distribution of # of heads after 50
coin flips, compared to a Gaussian.

Figure 2: The distribution of the number of heads in a sequence of n coin tosses quickly
converges to a Gaussian distribution, as predicted by the Central Limit Theorem.

4.2 Main Theorem

Of course, for finite n, the sum of n random variables is not necessarily exactly a Gaussian.
That’s where Chernoff bounds come in. They help us quantify this potentially very powerful
Gaussian approximation. It turns out that the CLT converges pretty quickly for sums of
bounded random variables, including binary variables like coins, that we can obtain tail
bounds nearly identical to what we get for a true Gaussian. Any bound of this type we
informally call a “Chernoff bound”.

There are many forms of Chernoff bounds, often under various other names (Chernoff
bound, Bernstein inequality, Hoeffding inequality, etc.). One particularly useful one ap-
plies to random variables bounded between [−1, 1]. To apply it to more general bounded
variables, just scale them to [−1, 1] first.

Theorem 1 (Quantitative version of CLT due to S. Bernstein). Let X1, X2, . . . , Xn be
independent random variables and each Xi ∈ [−1, 1]. Let µi = E[Xi] and σ2

i = var[Xi].
Then X =

∑
iXi satisfies

Pr[|X − µ| > kσ] ≤ 2 exp(−k2

4
),

where µ =
∑

i µi, variance σ2 =
∑

i σ
2
i , and k ≤ 1

2σ.

This theorem is usually called the Bernstein inequality.

4.3 Simple Application: Coins and statistical polling

Suppose we flip n fair coins again. Let X be the number of heads we see. We can use the
above theorem to formally bound Pr(|X − n/2| ≥ ϵn) ≤ δ as long as n = O(log(1/δ)/ϵ2).
In other words, if we want to test whether or not a coin is within ϵ of fair (i.e. it is heads
and tails, each with probability > 1/2− ϵ), then we can do so by averaging O(log(1/δ)/ϵ2),
and our test will only fail with probability δ.

7

Exercise: Show that Chebyshev’s inequality would predict that the same fairness test
requires O(1

ϵ2δ2
) – i.e. it gives an exponentially worse dependence on δ!

More generally, opinion polls and statistical sampling rely on tail bounds. Suppose there
are n arbitrary numbers in [0, 1]. If we pick t of them randomly with replacement then the
sample mean is within an additive ϵ of the true mean with probability at least 1 − δ if
t > Ω(1

ϵ2
log 1/δ).

4.4 Proof

Instead of proving Theorem 1, we prove a simpler theorem for binary valued variables which
showcases the basic idea. We’ll give a complete proof of this bound, which will be enough
to prove a pretty powerful hashing application.

Theorem 2. Let X1, X2, . . . , Xn be independent 0/1-valued random variables and let pi =
E[Xi], where 0 < pi < 1. Then the sum X =

∑n
i=1Xi, which has mean µ =

∑n
i=1 pi,

satisfies

Pr[X ≥ (1 + ϵ)µ] ≤ e
−ϵ2µ
3+3ϵ .

Remark: It’s actually possible to prove a slightly tighter bound where the right hand side is

e
−ϵ2µ
2+ϵ . Additionally, there is an analogous inequality that bounds the probability of devia-

tion below the mean, Pr[X ≤ (1− ϵ)µ]. For that bound, the right hand side becomes e
−ϵ2µ

2

On homeworks, you’re free to use any versions of Chernoff bounds that you find in other
course notes (or Wikipedia). There are many variants.

Proof. Surprisingly, this inequality also is proved using the Markov inequality, albeit applied
to a different random variable.

We introduce a positive dummy variable t that we will set to some non-negative value
later. We observe that

E[etX] = E[et
∑

i Xi] = E[
∏
i

etXi] =
∏
i

E[etXi], (1)

where the last equality holds because the Xi random variables are mutually independent.
Now, because each Xi is 0/1, we have that:

E[etXi] = (1− pi) + pie
t.

Therefore, ∏
i

E[etXi] =
∏
i

[1 + pi(e
t − 1)] ≤

∏
i

epi(e
t−1)

= e
∑

i pi(e
t−1) = eµ(e

t−1).

(2)

In the step with an inequality, we used that 1 + x ≤ ex. (This holds for all x – it’s
a surprisingly useful inequality to remember.) Finally, apply Markov’s inequality to the
random variable etX :

Pr[X ≥ (1 + ϵ)µ] = Pr[etX ≥ et(1+ϵ)µ] ≤ E[etX]

et(1+ϵ)µ
≤ e(e

t−1)µ

et(1+ϵ)µ
,

8

using lines (1) and (2) and the fact that t is positive. Since the statement holds for any t,
we can obtain a bound by setting t to any positive value we wish. If we set t = ln(1 + ϵ),
we get:

Pr[X ≥ (1 + ϵ)µ] ≤ eµ[ϵ−ln(1+ϵ)(1+ϵ)].

To see that this bound simplifies to give Theorem 2, we need a quick case argument.
Looking at the Taylor series of ln(1 + ϵ), we have:

ln(1 + ϵ) = ϵ− ϵ2

2
+

ϵ3

3
− ϵ4

4
+ · · ·

and

ln(1 + ϵ)(1 + ϵ) = ϵ+
ϵ2

2
− ϵ3

6
+

ϵ4

20
− · · ·

For ϵ ∈ [0, 1], we thus have ln(1 + ϵ)(1 + ϵ) ≥ ϵ + ϵ2/3. It follows that eµ[ϵ−ln(1+ϵ)(1+ϵ)] ≤
e−µϵ2/3 ≤ e−µϵ2/(3+3ϵ). On the other hand, when ϵ > 1, ln(1 + ϵ)(1 + ϵ) ≥ 1.38ϵ. It follow
that eµ[ϵ−ln(1+ϵ)(1+ϵ)] ≤ e−.38µϵ ≤ e−µϵ2/3ϵ ≤ e−µϵ2/(3+3ϵ).

5 Load balancing revisited

With our Chernoff bound pf Theorem 2 in place, let’s revisit our “balls-in-bins” analysis.
Using a Chebyshev bound, we were able to bound the max load of n bins after inserting n
balls by O(

√
n). The Chernoff bound will do exponentially better.

Again, we will analyze things one bin at a time. Let Xi = 1[ball i falls into bin 1] and
let X =

∑n
i=1Xi. µ = E[X] = 1. To apply Chernoff we will assume fully random hash

functions1. Since µ = 1, from Theorem 2, we have that:

Pr[X ≥ 1 + 6 log n] ≤ e−6 logn/3 ≤ 1

n2
.

So bin 1 gets ≤ 1+ 6 log n balls with probability at least (1− 1/n2). By a union bound, we
conclude that all bins have ≤ 1 + 6 log n with probability 1− 1/n.

This bound of O(log n) on the maximum load of any bin improves exponentially on our
bound of O(

√
n) from Chebyshev. Moreover, it holds with much higher probability. In fact,

we could have succeeded with probability (1 − 1/nc) for any constant c if we just increase
the constant factor on 6 log n a bit.2

1There was a question about this in class. It’s actually possible to prove Chernoff bounds using O(logn)-
wise independence, which is much better than full independence, but not as simple as the 2-wise independence
we assume for our Chebyshev bound. See recent work on improving over O(logn) independence in [1] or
even more recent work considering “power of two choices” like methods [2].

2We can actually obtain an upper bound of O(logn/ log logn) on the max load by directly applying
Pr[X ≥ (1 + ϵ)µ] ≤ eµ[ϵ−ln(1+ϵ)(1+ϵ)] obtained in the above proof.

9

5.1 Power of Two Choices

The above O(log n) bound is very good, but it turns out that a simple alternative hashing
scheme can do even better. Consider the method you use at the supermarket checkout:
instead of going to a random checkout counter you try to go to the counter with the shortest
line. In the hashing setting this is computationally too expensive: one has to check all n
queues. A much simpler version is the following: when the ball comes in, pick 2 random
bins, and place the ball in the one that has fewer balls. It turns out that this modified rule
ensures that the maximal load drops to O(log log n), which is a huge improvement. This
called the power of two choices and was first proven in the conference version of [3].

How about 3 choices? 4? d? Surprisingly there’s not much to be gained after 2. The
bound only improves to O(log log n/ log d) for d choices.

6 Fancy Concentration Inequalities

As you get deeper into randomized algorithms, you’ll likely find that you rarely get to apply
Chernoff bounds mechanically. Instead, you’ll likely feel something to the effect of “Come
on! This feels basically like a Chernoff bound, and should probably concentration. It’s just
super annoying because I want to bound some other function instead of the average (or
because my random variables aren’t exactly independent).” Sometimes, you’ll be right and
indeed the random variable you care about concentrates. Sometimes you’ll be right and
lucky, and you can prove concentration as a special case of a fancier theorem.3

We’ll consider the following examples throughout the rest of lecture, and state (but not
prove) concentration inequalities that apply. These examples, and the statements of the
subsequent concentration inequalities, are drawn from Jan Vondrák’s fantastic notes here [4].

Example 1: Random Cut in a Graph. Consider a fixed unweighted graph G. Consider
forming a set S by taking each node independently with probability pv, and then output
the value of the cut S in G. To make this example 1-Lipschitz (see definition below), let’s
divide the output by n).

Example 2: Max-Weight Feasible Subset. Consider a space N of elements and an
arbitrary collection of subsets, F ⊂ 2N . For each e ∈ N , let Xe be equal to 1 with
probability pe, and zero otherwise. Define X := maxS∈F{

∑
eXe}.

Observe that this is equivalent to the following. Think of X as the set of elements with
Xe = 1, drawn randomly as described above. Then, output fF (X) := maxS∈F{|X ∩ S|}.

For all F , the function is fractionally subadditive or XOS (these definitions are equiva-
lent). XOS means that there exist non-negative linear functions (in this case, |X ∩S| for all
S ∈ F) such that f(X) is the maximum over these linear functions. It is easy to see that
fF is XOS. Fractionally subadditive means that f(X) ≤

∑
i cif(Xi) whenever ci ≥ 0 for all

i and
∑

i,Xi∋j cj ≥ 1 for all j ∈ X. That is, whenever the (ci, Xi)s form a fractional cover

3Sometimes you’ll also be wrong, and your random variable won’t in fact concentrate as well as you’d
hope. And sometimes you’ll be right, but not lucky, and need to take a long mathematical journey to prove
the concentration you want. Developing intuition for which of the three cases you’re in takes time, but
hopefully these notes help get you started towards that.

10

of X. It is non-trivial to see that XOS and fractionally subadditive are equivalent, but this
can be proved using LP duality.

Example 3: Subadditive Functions. Consider drawing X1, . . . , Xn independently, with
each Xi = 1 with probability 1/2, and Xi = 0 otherwise. Then, output f(

∑
iXi) where:

• f(x) = x, 0 < x <
√
n.

• f(S) =
√
n,

√
n ≤ x ≤ (n−

√
n)/2.

• f(S) =
√
n+ x− (n−

√
n)/2, (n−

√
n)/2 < x < (n+

√
n)/2.

• f(S) = 2
√
n, x ≥ (n+

√
n)/2.

Observe that this is equivalent to the following. Consider a space N of elements with
|N | = n. Define:

• f(S) = |S|, 0 < |S| <
√
n.

• f(S) =
√
n,

√
n ≤ |S| ≤ (n−

√
n)/2.

• f(S) =
√
n+ |S| − (n−

√
n)/2, (n−

√
n)/2 < |S| < (n+

√
n)/2.

• f(S) = 2
√
n, |S| ≥ (n+

√
n)/2.

That is, f(S) only depends on the size of S, and is always between
√
n and 2

√
n. It increases

from
√
n to 2

√
n from (n −

√
n)/2 to (n +

√
n)/2. Observe that f(·) is subadditive, sim-

ply because f(S∪T) ≤ 2
√
n ≤ f(S)+f(T). Draw a uniformly random set, and output f(S).

Example 4: Arbitrary 1-Lipschitz Function. Consider a space N of elements with
each Xi equal to 1 with probability 1/2, independently, and 0 otherwise. Let S denote the
elements with Xi = 1, and output max{0, |S| − n/2}.

6.1 Lipschitz Functions

Definition 1. A function f : 2N → R is c-Lipschitz if for all S ⊆ N and all j ∈ N :
|f(S ∪ {j})− f(S)| ≤ c.

Observe that all four examples come from the the following format: There is a process to
draw each Xi ∈ {0, 1} independently at random. Then, output f({i : Xi = 1}, where f(·)
is some 1-Lipschitz function. Therefore, all four examples satisfy the following concentration
inequality:

Theorem 3 (McDiarmid’s Inequality). Let X1, . . . , Xn be independent random variables,
and let f(·, . . . , ·) satisfy the bounded differences property for c1, . . . , cn. That is, for all i,
Xi, X

′
i, and X⃗−i, |f(Xi; X⃗−i)− f(X ′

i; X⃗−i)| ≤ ci. Then:

Pr[|f(X⃗)− E[f(X⃗)| ≥ ε] ≤ 2e−2ε2/
∑n

i=1 c
2
i .

11

Corollary 4. Let f be a 1-Lipschitz function, and consider any random variable X that
draws set S by including each element e independently with probability pe and defines X :=
f(S). Then:

Pr[|f(X⃗)− E[f(X⃗)| ≥ ε] ≤ 2e−2ε2/n.

In particular, observe that the Corollary implies that one does not expect deviations
larger than

√
n except with constant probability. However, the above inequality does not

give anything better. As an example to have in mind, consider a random variable with
expectation 2 log n. The above Corollary states that it is not too likely to be larger than√
n, whereas a Chernoff bound (if valid) would imply that it is quite unlikely to be larger

than 2.2 log n.

6.2 Subadditive Functions

If f has further structure than simply being Lipschitz, we can get stronger concentration.
We still can’t quite get the same level of concentration as Chernoff for small deviations.
But, we can at least show that large deviations become exponentially less likely.

Theorem 5 (Schechtman). Let f be a 1-Lipschitz function and subadditive, and consider
any random variable X that draws set S by including each element e independently with
probability pe and defines X := f(S). Then for any a > 0, 1 ≤ k ≤ n, and integer q:

Pr[f(X⃗) ≥ (q + 1)a+ k] ≤ Pr[f(X⃗) ≤ a]−qq−k.

Corollary 6. Let f be a 1-Lipschitz function and subadditive, and consider any random
variable X that draws set S by including each element e independently with probability pe
and defines X := f(S). Let also a denote the median of f(X⃗) (that is, Pr[f(X⃗) ≤ a] = 1/2).
Then:

Pr[f(X⃗) ≥ 3a+ k] ≤ 22−k.

Observe that, once we are far from the median, Schechtman’s inequality implies that
further deviation becomes exponentially unlikely. However, Schechtman’s inequality has no
bite for small deviations. This is by necessity. Consider Example 3: the median is 3

√
n/2,

but we see values of 2
√
n with constant probability.

Observe also that some assumption is needed beyond being 1-Lipschitz. Indeed, Example
4 has a median of 0, but also exceeds

√
n with constant probability (whereas Schechtman’s

inequality, if valid, would claim that the probability of this is 2−
√
n).

6.3 Fractionally Subadditive Functions and Non-Monotone Submodular
Functions

If f is fractionally subadditive (as in Example 2), or submodular (even non-monotone, as
in Example 1), then we can get stronger Chernoff-like concentration bounds. The approach
towards this is self-bounding functions.

12

Definition 2. A function f : 2N → R is (a, b) self-bounding if there exist functions fi :
2N\{i} → R such that for all S and and all i:

0 ≤ f(S)− fi(S \ {i}) ≤ 1.

n∑
i=1

f(S)− fi(S \ {i}) ≤ af(S) + b.

If (a, b) = (1, 0), we simply say that f is self-bounding.

Lemma 7. Every 1-Lipschitz fractionally subadditive function is self-bounding.

Proof. Consider fi := f . Then we have that 0 ≤ f(S) − f(S \ {i}) ≤ 1 because all XOS
functions are monotone, and because f is 1-Lipschitz. This establishes the first condition.

To see the second condition, observe that fractional subadditivity directly implies that:

f(S) ≤
n∑

j=1

1

n− 1
· f(S \ {i}) = 1

n− 1

n∑
i=1

fi(S \ {i}).

⇒ (n− 1)f(x)−
n∑

i=1

fi(S \ {i}) ≤ 0.

⇒
n∑

i=1

f(S)− fi(S \ {i}) ≤ f(S).

Lemma 8. Every 1-Lipschitz submodular (even non-monotone) function is (2, 0) self-
bounding.

Proof. Define fi(S \{i}) := min{f(S∪{i}), f(S \{i})}). When f is monotone, observe that
this is always f(S \ {i}) (which is what we used for fractionally subadditive functions).

Observe first that f(S)−min{f(S ∪ {i}), f(S \ {i})}) ≥ 0 for all S. Also, observe that
because f is 1-Lipschitz, that f(S)−min{f(S ∪{i}), f(S \ {i})}) ≤ 1 as well. This satisfies
the first condition.

To establish the second condition, we partition the sum into two parts. Let A denote
the set of indicies for which fi(S \ {i}) := f(S \ {i}), and B denote the remaining indices.
We can write the following:

∑
i∈A

f(S)− f(S \ {i}) ≤
∑
i∈A

f(S \ {1, . . . , i− 1})− f(S \ {1, . . . , i})

= f(S)− f(S \A) ≤ f(S).

Similarly, we can write:∑
i∈B

f(S)− f(S ∪ {i}) ≤
∑
i∈B

f(S ∪ {1, . . . , i− 1})− f(S ∪ {1, . . . , i})

= f(S)− f(S ∪B) ≤ f(S).

13

Adding the two together, we get that:

∑
i

f(S)− fi(S \ {i}) =
∑
i∈A

f(S)− f(S \ {i}) +
∑
i∈B

f(S)− f(S ∪ {i}) ≤ 2f(S).

Now, we can use fairly powerful concentration inequalities on self-bounding functions,
and conclude Chernoff-style concentration for fractionally subadditive and non-monotone
submodular functions.

Theorem 9 (Boucheron, Lugosi, Massart). Let f be a 1-Lipschitz function and self-bounding,
and consider any random variable X that draws set S by including each element e indepen-
dently with probability pe and defines X := f(S). Then:

Pr[f(X⃗) ≥ (1 + δ)E[f(X⃗)]] ≤
(

eδ

(1 + δ)1+δ

)E[f(X⃗)]

.

Pr[f(X⃗) ≤ (1− δ)E[f(X⃗)]] ≤ e−δ2E[f(X⃗)]/2.

Theorem 10 (McDiarmid, Reed, and Boucheron, Lugosi, Massart). Let f be a 1-Lipschitz
function and (a, b)-self-bounding for a ≥ 1/3, and consider any random variable X that
draws set S by including each element e independently with probability pe and defines X :=
f(S). Then:

Pr[|f(X⃗)− E[f(X⃗)]| ≥ t] ≤ 2e
− t2

2·(aE[f(X⃗)]+b+(3a−1)t/6) .

Corollary 11. Let f be a 1-Lipschitz function and (2, 0)-self-bounding, and consider any
random variable X that draws set S by including each element e independently with proba-
bility pe and defines X := f(S). Then:

Pr[|f(X⃗)− E[f(X⃗)]| ≥ δE[f(X⃗)]] ≤ 2e
− δ2E[f(X⃗)]

4+5δ/3 .

References

[1] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and bins: Smaller hash
families and faster evaluation. SIAM J. Comput., 42(3):1030–1050, 2013.

[2] Xue Chen. Derandomized Balanced Allocation. Preprint, 2017.
https://arxiv.org/abs/1702.03375

[3] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced Allocations.
SIAM J. Comput. 29, 1, 1999.

[4] Jan Vondrak. A note on concentration of submodular functions.
https://arxiv.org/pdf/1005.2791.pdf.

https://arxiv.org/abs/1702.03375
https://arxiv.org/pdf/1005.2791.pdf

	Preliminaries
	Three progressively stronger tail bounds

	Markov's Inequality
	Chebyshev's Inequality
	Example: Load balancing
	Another common use

	Chernoff bounds
	Motivation
	Main Theorem
	Simple Application: Coins and statistical polling
	Proof

	Load balancing revisited
	Power of Two Choices

	Fancy Concentration Inequalities
	Lipschitz Functions
	Subadditive Functions
	Fractionally Subadditive Functions and Non-Monotone Submodular Functions

